Code: 23ES1103

I B.Tech - I Semester – Supplementary Examinations - JULY 2024

BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Common for CE, ME, IT, AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts: Part-A and Part-B.

- 2. Each Part contains:
 - 5 short answer questions. Each Question carries 1 Mark and
 - 3 essay questions with an internal choice from each unit. Each question carries 10 marks.
- 3. All parts of Question paper must be answered in one place.

PART – A

1.a)	Define Inductance.
1.b)	What is RMS (Root Mean Square) Value?
1.c)	Express the Torque Equation of a PMMC.
1.d)	Mention the principle of motor.
1.e)	Calculate the electricity bill amount for a month of 31 days, if 1
	fridge of 300 watts for 24 hours is used. Given the rate of
	electricity is Rs. 2 per unit.

			Max.	
			Marks	
	UNIT-I			
2	a)	Find the current i using superposition theorem for	5 M	
		the circuit shown in Fig.		
		$ \begin{array}{c c} 3\Omega \\ \hline 2\Omega \\ \hline 7A $		

	b)	In a series circuit containing pure resistance and a	5 M
		pure inductance, obtain the voltage and current	
		relationship with phasor diagram and explain how to	
		calculate the average power drawn by the circuit and	
		power factor?	
		OR	
3	a)	Calculate the r.m.s. value, the form factor and peak	5 M
		factor of a periodic voltage having the following	
		values for equal time intervals changing suddenly	
		from one value to the next: 0, 5, 10, 20, 50, 60, 50,	
		20, 10, 5, 0, -5, -10 V etc. What would be the r.m.s	
		value of sine wave having the same peak value?	
	b)	The lamps in a set of decoration lights are connected	5 M
		in series. If there are 20 lamps and each lamp has	
		resistance of 25Ω , calculate the total resistance of	
		the set of lamp and hence calculate the current taken	
		from a supply of 230 volts.	
	ı	UNIT-II	ı
4	a)	Explain the principle of operation of transformer.	5 M
	b)	Illustrate the construction and working principle of	5 M
		Attraction type Moving Iron (MI) Instruments.	
		OR	
5	a)	Describe the construction and principle of operation	5 M
		of a 3-phase induction motor with neat sketch.	
	b)	Discuss the working principle of Wheat Stone	5 M
		Bridge.	

UNIT-III				
6	a)	Distinguish between conventional and non-	5 M	
		conventional sources of energy.		
	b)	Explain the working principle of Fuse. Mention its	5 M	
		merits and demerits.		
OR				
7	a)	Outline the Solar power generation.	5 M	
	b)	Analyze significance of Earthing and its types.	5 M	

PART - B

1.f)	What is cut in voltage of a PN diode?
1.g)	Define Active region of a BJT.
1.h)	Mention the difference between rectifier and regulator.
1.i)	What is public address system?
1.j)	State the applications of flip-flops.

			Max.
			Marks
	•	UNIT-I	
8	a)	Explain the input and output characteristics of NPN	5 M
		transistor when operated in Common Emitter mode.	
	b)	What do you understand by avalanche breakdown	5 M
		process in reverse bias PN junction diode?	
	•	OR	
9	a)	What is Zener diode? Explain its VI characteristics	5 M
		in forward and reverse bias.	
	b)	Compare CB, CE, CC configurations of a BJT.	5 M

		UNIT-II	
10	a)	Illustrate the block diagram of Regulated Power	5 M
		supply with waveforms.	
	b)	Explain the working of Full wave rectifier with	5 M
		capacitor input filter with relevant diagrams.	
		OR	
11	a)	Illustrate the block diagram of an electronic	5 M
		instrumentation system.	
	b)	Outline the basic components of a public address	5 M
		system.	
		UNIT-III	
12	a)	Implement the full adder using half adders and OR	5 M
		gate.	
	b)	Distinguish between registers and counters.	5 M
		OR	
13	a)	Outline the error correcting codes with suitable	5 M
		examples.	
	b)	Analyze about the AND, OR, NOR & NAND logic	5 M
		gates with respective truth tables.	